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Abstract-The viscous dissipation heating of a finite length cylinder exposed to a steady uniform velocity 
non-Newtonian fluid has been analyzed numerically. The solution determines the elliptic, velocity and 
temperature fields of a high viscosity non-Newtonian Carreau model fluid about an axisymmetric cylinder. 
With polymer processing in mind, Part I of this study [E. R. G. Eckert and J. N. Shadid, ht. J. Heat Mass 
Transfer 32,321-334 (1989)] considered the effect of the Reynolds number, Prandtl number, probe radius 
to length ratio and the ratio of cylinder conductivity to fluid thermal conductivity. This paper extends 
these results by considering the effect of a temperature-dependent non-Newtonian shear thinning viscosity 
modeled by a temperature shifted Carreau fluid. Computations were performed for different values of the 
power law exponent, the Weisenberg number, and the Nahme number. In this study calculations are 
presented for an adiabatic probe with a radius to length ratio of 2.5 x 10e2, with the Reynolds and Prandtl 
numbers taken to be fixed at 10m9 and lo8 respectively. The power law exponent is varied from 1.0 
(Newtonian) to 0.2, the Weisenberg number varies from 0 (Newtonian) to 104, and the Nahme number 
between 0 and 104. The results determine the increase in the cylinder wall and tip temperature due to 
viscous frictional heating. Strong elliptic effects on the velocity extend over 100 radius lengths upstream 
from the cylinder. As expected the shear thinning behavior of the non-Newtonian viscosity is found to 
decrease the magnitude of the viscous dissipation heating of the probe surface. In contrast, the effect of 
the temperature dependence of viscosity described by the Nahme number is found to have a relatively 

small influence on the cylinder tip temperature. 

INTRODUCTION 

IN THE flow of polymeric fluids, evaluation of the 
local temperature field is often of primary interest 
since a number of physical properties can vary sub- 
stantially with temperature. In addition, relaxation 
phenomena in polymers are strongly temperature 
dependent, and the amount and location of residual 
stress or strain in the product will depend on the local 
temperature history of the polymer [ 11. For this reason 
the temperature field can have a significant effect on 
the flow field as well as on the process itself. 

The effort to measure local temperatures in a flow- 
ing polymer encounters the difficulty that any object 
exposed to a viscous flow is heated by internal friction 
in a process which converts mechanical energy in the 
fluid into internal energy and thus raises the probe 
temperature. This process is known as viscous heat- 
ing. The resulting temperature increase has to be 
minimized or has to be determined by calibration if 
one wants to obtain from the recorded probe tem- 

perature the temperature which the fluid would have 
when the probe is absent. 

The present paper reports the results of an analysis 
of viscous heating of a cylinder with finite length 
oriented with its axis parallel to the velocity of the 
oncoming non-Newtonian fluid flow. It is thought 
that the cylinder approximates the shape of a tem- 
perature probe inserted into the fluid. The velocity 
and temperature fields are obtained by the analysis, 
in addition to the surface temperature of the cylinder. 
Knowledge of these fields is a prerequisite to an under- 
standing of the relation between the temperature 
history of a polymer melt and its effect on the macro- 
scopic physical properties of the polymer material. 
Part I of this study [2] considered the effect of the 
Reynolds number, Prandtl number, probe radius to 
length ratio and the ratio of cylinder conductivity to 
fluid thermal conductivity. The results indicated a 
substantial increase in the cylinder wall and tip tem- 
perature due to viscous frictional heating. Strong ellip- 
tic effects on velocity were found to extend over 100 
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NOMENCLATURE 

al- temperature shift factor for viscosity, 

equation (13) 
c* specific heat 
G* = i(VV* +VV*‘) deformation rate 

tensor 

E* activation energy parameter in Arrhenius 

model, equation (14) 

k* thermal conductivity 
L* cylinder length 

P* pressure 
P = P*R*/q*UX dimensionless pressure 
R* cylinder radius 

l?* gas constant in Arrhenius model, 

equation (14) 
r* coordinate 

r = r*/R* dimensionless coordinate 
T* temperature 

TX upstream temperature 

Ub upstream velocity 

ri* velocity component 
u = u*/Uz dimensionless velocity 

component 
V* velocity vector 

zI* velocity component 
11 = v*/Ug dimensionless velocity 

component 

x* coordinate measured from cylinder tip 

.x: coordinate measured from cylinder 

midplane 
x = x*/R* dimensionless coordinate. 

Greek symbols 
y* magnitude of deformation rate tensor 

D*, equation (13) 

‘1* viscosity 
0 angular coordinate 

0 = (T* - 7-;)/(n*U;/p*c,* R*) 
nondimensional temperature 

3.; relaxation time parameter for Carreau 

model, equation (13) 

P* density 
@,* dissipation function (see 

equation (6)) 
vv* velocity gradient tensor. 

Dimensionless quantities 
Na = (rf(E*/k*TT,‘)UX’)/k* Nahme 

number 
Pr = q*c,*/k,* Prandtl number 
Re = 2p*U:R*/q* Reynolds number 

Wb = l,*U;/R* Weisenberg number. 

Superscripts 
* dimensional quantity 
T transpose. 

Subscripts 
0 upstream 
f fluid 
S solid 

P cylinder tip. 

radius lengths upstream from the cylinder. The vel- 
ocity field results also indicated a nearly ‘creeping 
flow’ type velocity distribution about the cylinder 
body. In contrast, the temperature field was found to 
be confined to a very narrow region of high de- 
formation rates around the cylinder surface. This 
study extends these results by considering the effect 
of a shear thinning, temperature-dependent non- 
Newtonian viscosity modeled by a temperature shifted 

Carreau fluid. 

This paper, to our knowledge, presents the first 
study of this kind for an external flow around an 
object, whereas internal flow situations for pipes, 
ducts and extruders have been reported in the litera- 
ture [l, 31. 

PROBLEM FORMULATION 

Conservation equations 
The following equations describe the steady, lami- 

nar axisymmetric flow of a Carreau model non-New- 

tonian fluid past a cylinder arranged with its axis 
parallel to the main flow direction (Fig. 1). In the 
equations, the pressure work term in the energy equa- 
tion and the gravity term in the momentum equation 

have been neglected. The equations have been made 
dimensionless by the following change of variables : 

6, r, u, 0, P, 0, ~1 = 

x* r* u* v* P*R* T*-T,* r~* 
R*‘R*‘Uo*‘UX’rl*Uo*‘?*Uo*lp*c,*-R*’~’ 

(1) 

The symbols are defined in the Nomenclature and are 
also indicated in Fig. 1. The resulting dimensionless 
equations are : 

Continuity equation 

1 a(rv) 

r ar 
+,“=o (2) 
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Equations of motion 

k-u-q------4 t 
c 

FIG. 1. Coordinate system and computational domain (not to scale). 

Energy equations 

8Of 
+- dx2 +i Re Pr q@ (5) 

with the following boundary conditions for the com- 
putational domain ABCDEF : 

on AB,CD : 

au G?Of 
;;r=o, v=o, --$-=o 

on AF,EF: 

ll= 1, v=o, or=0 U-9 

on DE: 

au av ao, 
-=--_--0 

ax ax ax 

on BG,HC : 

ao, 
u=u=o, -=o 

ax (10) 

onGH: 

The boundary conditions on line segments AB and 
CD reflect the axisymmetric nature of the steady flow 
past the cylinder. On the segments AF and EF the 
flow conditions are taken to be free stream values 
since these boundaries are chosen to be far from the 
cylinder body. Outflow conditions are assumed to 
exist on the segment DE, which is located far down- 
stream from the cylinder. At the solid-fluid interface 
made up of segments BG, GH and HC the no-slip 
condition holds along with the continuity of the inter- 
face temperature. It is also postulated that no tem- 
perature equalization occurs within the cylinder (the 
heat conductivity of the cylinder k,* is zero). This 
assumption has been shown to be physically reason- 
able in the analysis of Part I. As in Part I an average 
probe tip temperature, Osp is defined as below : 

OS, = 2 ’ Os,xSor dr. V4 

Constitutive equation 
The constitutive equation for the Carreau model is 

a specific example of a generalized Newtonian fluid 
model in which the viscosity, q*, is allowed to vary 
with the magnitude j* of the defo~ation rate tensor 
D*. This parameter is also commonly termed the 
‘shear rate’ or ‘deformation rate’. The most commonly 
used generalized Newtonian fluid model is the power 
law model [4, 51. However, this simple model is not 
directly applicable to this type of external flow, since 
far from the cylinder body uniform free stream vel- 
ocity conditions, and consequently zero shear rate 
conditions, prevail. In this case the power law model 
predicts a physically unrealistic infinite viscosity. For 
this reason, the temperature shifted Carreau or modi- 
fied power law model [I], with its smooth transition 
to a constant viscosity at the limit of zero shear rate, 
is used : 
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The two material parameters, ip* and nz, in the Carrcau 
model describe the shear rate dependence of the vis- 
cosity. The power law index, m. controls the slope of 
the $ r*_ ?*(“I ‘1 power law region of the viscosity 
model, whereas the characteristic relaxation time, j-z, 
describes the transition to a constant viscosity in the 
limit of zero shear rate. In this context, j$ is used to 
describe the shear thinning behavior of the fluid; this 
parameter does not describe any type of viscoelastic 
behavior of the fluid. The above Carreau model 
involves the minimum number of material parameters 
necessary to describe the purely viscous effects which 
arc expected to be most important in such flow situ- 
ations. The study of viscoelastic effects would require 
a considerably more complex constitutive model and 
involve more material parameters ; it is therefore left 
to later studies to detail the rokof elastic effects on 
the viscous dissipation heating produced in such 
flows. 

The viscosity of non-Newtonian fluids is also 
known to depend on temperature and pressure; the 
small amount of available data indicate that the tem- 
perature dependence is much stronger than the pres- 
sure dependence [l]. For this reason, the pressure 
dependence will be neglected in the following analysis. 
The temperature dependence of polymeric liquids can 
be described by the method of reduced variables [6] 
with the use of a material dependent shift factor a,. 
Commonly this temperature dependence is modeled 
by an Arrhenius function : 

This relationship is observed to hold for low molec- 
ular weight fluids and molten polymers 100 K or more 
above their glass transition tem~ratures [I]. Using 
the definition (I) the nondimensional form of the 
temperature shifted Carreau model becomes : 

(1% 

with 

In this fo~uiation the parameter Wb can be inter- 
preted as a type of Weisenberg number describing the 
ratio of characteristic relaxation time of the fluid to a 
characteristic time, R*/Uz, for the flow process. The 
influence of the shift factor, uT, the Weisenberg 
number, Wh, and the power law index, m, is shown 

10s [ Wbi ] 

Ftc. 2. Schematic diagram of temperature shifted Carreau 
model. 

in Fig. 2. The nondimensional form of (14) is given 

by 

aT = exp (16) 

The nondimensional parameter, Nu, is the Nahme 
number [l, 71. For relatively small temperature differ- 
ences, TgJT” cz 1, equation (16) can be simplified to 

which is assumed to describe the temperature depen- 
dence of viscosity in the analysis that follows. Winters 
(personal communication, 1988) indicates that equa- 
tions (15) and (37) provide a good description of the 
temperature and shear rate dependence of viscosity 
for polymer melts, while at the same time eliminating 
the additional process-dependent parameter Tz/T*. 
Also, it should be noted that since T* 2 7’8, equation 
(17) provides an upper limit on the viscosity decreas- 
ing effect of temperature. 

The nondimensional equations and boundary con- 
ditions above indicate that the dimensionless velocity, 
pressure and temperature fields are functions of the 
power law index, m, Weisenberg number. Wh. and 
the Nahme number, Nn. for fixed Re, Pr, R*jL’ 
and k:/k:. From the Newtonian analysis of 
Part I the following values, Re = lo- ‘, Pr = IO’, 
R*/L* = 2.5 x 10.. 3 and k$/k,* = 0, have been selected 
as representative of such polymer flows. 

COMPUTATIONAL DETAILS 

The governing equations were discretized by using 
a control volume based finite difference scheme along 
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with the SIMPLER procedure for solution of the 
velocity and pressure fields [8]. The resulting system 
of nonlinear algebraic equations was linearized by 
a Picard iteration (or successive substitution) 
procedure. Thus, for example, the inherent non- 
linearity of the temperature and shear rate dependence 
of viscosity is linearized by using values from the 
previous iteration to compute the viscosity at each 
grid point. At each iteration a direct inversion tech- 
nique was used to solve for the flow variables (u, U, 
P), along with a line-by-line technique [8] for the 
temperature field 0. A penalty method formulation is 
used to produce nonzero diagonal elements associated 
with the continuity equation in the coefficient matrix. 
This technique, discussed in detail in ref. [9], allows 
efficient inversion of the coefficient matrix using sparse 
matrix routines. 

The computational domain was discretized by a 
150 x 50 nonuniform grid in the x and r directions 
respectively. The grid was finer in the x direction at 
the probe tip; in the r direction the grid was finest 
near the probe wall GH. In order to achieve grid and 
domain independent results a highly nonuniform grid 
was found to be necessary. The details of the grid 
independence study can be found in Part I. The 
computations were performed on the Minnesota 
Supercomputer Institute’s Cray-2 machines. Typical 
execution times for the numerical solutions were of 
the order of 600 seconds. The core memory required 
was about 5 x lo6 Cray-2 words (64 bit words). 

The influence of the nondimensional parameters on 
the solution of the governing equations was deter-. 
mined as follows. For the case of a Carreau model 
fluid with no temperature dependence on viscosity 
(Nu = 0) the effect of the power law index, m, on the 
velocity and temperature fields was studied by fixing 
Wb = 103. The value of Wb was varied between 0 and 
IO4 for Nu = 0 and m = 0.5 to study its effect on 
the velocity and temperature fields. The effect of a 
temperature dependence on viscosity was studied 

by fixing m = 0.5 and Wb = IO3 while varying the 
Nahme number from 0 to 10“. 

RESULTS AND DISCUSSION 

Velocity JieId 
The effect of the shear rate dependence of the vis- 

cosity on the hydrodynamic boundary layers around 
the cylinder body is presented in Fig. 3 for the case 
Wb = 10’. The vertical and the horizontal scales in 
this plot are nonlinear and vary as Jr and 
,/(1x-a]) respectively. The term boundary layer in 
this context is used to describe the region of the flow 
about the cylinder body which is affected by viscous 
forces. In this plot the axisymmetric nature of the flow 
has been used in the present results for the entire plane 
0 = constant. It is clearly evident from Fig. 3 that a 
decrease in the power law index, m, causes a cor- 
responding decrease in the thickness of the 99% 
boundary layer surface. Thus the non-Newtonian 
shear thinning behavior limits the domain influenced 
by the presence of the cylinder body in the uniform 
flow. Since m typically varies from 0.6 to 0.2 for 
polymer melts, it is evident that the non-Newtonian 
behavior has a pronounced effect on the location of 
the 99% boundary layer. For example, in the case 
of m = 1.0 the Newtonian boundary surface extends 
approximately six times further from the cylinder sur- 
face than the corresponding m = 0.4 surface. In Fig. 3, 
a ‘necking’ or thinning of the boundary layer surfaces 
near the corners of the cylinder is apparent for small 
values of m. This necking in the vicinity of the corners 
is most likely due to the existence of high shear rate 
regions near the corner (see Figs. 5 and 6, Part I) 
and the increased shear thinning of viscosity as m 

decreases. With this local decrease in viscosity due to 
shear thinning, the fluid accelerates near the corner 
and thereby decreases the thickness of the boundary 
layer. 

The upstream elliptic effects due to the presence of 

FIG. 3. Location of axisymmetric 99% boundary layer surface (Nu = 0, Wb = 103, u*/UX = 0.99). 
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FIG. 4. Velocity profiles upstream of cylinder tip (Na = 0, 
WI = IO’, x*/R* = - 1.32). 

the cylinder body are evident in Figs. 4 and 5. In Figs. 
4 and 5 nondimensional velocity profiles are plotted 
at a fixed point upstream of the cylinder tip. From 
these figures it is apparent that as the magnitude of the 
shear thinning effects increases, the upstream velocity 
profile approaches more closely a uniform flow dis- 
tribution. In Fig. 5 it is evident that the influence of 
the Weisenberg number decreases as Wb increases to 
about 103. This trend is to be expected since as 
Wb increases (Fig. 2) the ‘power law’ region of the 
viscosity relationship increases in magnitude to lower 
shear rates. Thus in almost the entire hydrodynamic 
boundary layer near the cylinder body the fluid 
behaves as a power law type fluid. 

The increase in the magnitude of the velocity gradi- 
ents, and hence the deformation rate $, with increasing 
non-Newtonian behavior is most clearly seen in a plot 
of deformation rate just upstream of the cylinder tip. 

Wb = 0 (Newtonian 

9 
D I 

x 
0.0 0.1 0.2 0.3 0.4 0.5 0.5 0.7 0.0 0.9 1.D 

u*/u; 
FIG. 5. Velocity profiles upstream of cylinder tip (Na = 0, 

m = 0.5, x*/R* = - 1.32). 

E. R. G. ECKERT 

FIG. 6. Deformation rate profiles upstream of cylinder tip 
(Na = 0, Wb = 103, x*/R* = -0.1). 

Figure 6 presents the effect of decreasing power law 
index, m, for a fixed Wb = 10” and x*/R* = -0.10. 

Clearly the local decrease in the viscosity in the higb 
velocity gradient regions tends to further increase the 
magnitude of the deformation rate v*. As in Part I, the 
maximum deformation rate is found near the corner 
BGH (Fig. 1) and consequently r*/R* = 1.0. The 
effect of decreasing M is to confine the large defor- 
mation rates to a smaller interval about r*/R* = I .O 

as well as increasing its maximum value. A similar 
tendency is found with increasing Weisenberg number 
and it is therefore not presented. 

The effect of increased shear thinning behavior on 
the deformation rate profiles in the hydrodynamic 
boundary layer along the cylinder surface is presented 
in Figs. 7 and 8. As m decreases the boundary layer 
velocity profile fills out, with a corresponding decrease 
in the momentum deficit of the velocity profile. At the 

FIG. 7. Velocity profiles in hydrodynamic boundary layer on 
cylinder surface (Nu = 0, WZI = 103, .x*/R* = 0.11). 
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FIG. 8. Deformation rate profiles in hydrodynamic boundary FIG. 9. Temperature profiles in thermal boundary layer on 
layer on cylinder surface (Na = 0, Wb = 103, x*/R* = 0.11). cylinder surface (Na = 0, Wb = lo’, x*/R* = 0.11). 

same time the deformation rate at the surface increases 
as the velocity gradient normal to the cylinder surface 

increases. 

13, Part I). For this reason, the effect of the increasing 

non-Newtonian behavior on the cylinder tip has been 
summarized in Figs. 12 and 13 for an adiabatic body. 

Temperature field 
The effect of increasing non-Newtonian behavior of 

the Carreau model fluid on the velocity field has been 
summarized in the previous section. In general, as m 

decreases (or Wb increases) the velocity field profile 
fills out and the velocity gradients near the cylinder 
surface increase in magnitude. This increase in vel- 
ocity gradient has the effect of increasing the mag- 

nitude of the viscous dissipation term (equation (6)). 
Counteracting this increase in velocity gradient is the 
corresponding decrease in the magnitude of the vis- 
cosity ratio coefficient, q, of the viscous dissipation 
term in equation (5). In the figures that follow it is 

seen that the overall effect of the increasing non-New- 

tonian behavior is to lower the magnitude of energy 
dissipated by viscous friction in the particular flow. 

Figure 12 presents the nondimensional tip tem- 

perature for various values of 0.2 < m < 1.0 and 
lo- ’ < Wb < 1 06. A significant decrease in tip tem- 
perature is apparent in Fig. 12 for values in the range 

of 0.2 < m < 0.6 and 10’ < Wb < lo4 which would 
be representative of typical polymer melts. Also evi- 
dent in Fig, 12 is a ‘power law’ like region for tip 
temperature when 10’ < Wb < IO’. This region 

clearly corresponds to the power law asymptotic 
region illustrated in Fig. 2. To further demonstrate 
the existence of this region a power law type cor- 
relation has been fitted to the numerical data in the 

region, 0.2 d m < 0.8 and 10’ < Wb < 10’. The cor- 
relation given in equation (18) below is plotted with 

the numerical data in Fig. 13 : 

Figure 9 presents temperature profiles in the ther- 
mal boundary layer downstream of the cylinder tip 
for various values of m. In this figure, the decrease in 
the thermal boundary layer thickness and the adia- 
batic wall temperature are evident as the non-New- 
tonian behavior of the fluid increases. For example, a 
decrease in m from 1.0 to 0.4 produces a decrease of 
about 25 times in the local dimensionless adiabatic 
wall temperature. Clearly, the shear thinning effect on 
viscosity is an important factor in characterizing the 

viscous dissipation heating of such flows. The effect of 
increasing non-Newtonian behavior on the adiabatic 
wall temperature along the cylinder surface is shown 
in Figs. 10 and 11. From these figures, as discussed 
in Part I, the effect of a nonadiabatic cylinder body 
on the cylinder tip temperature can be estimated. 
However, as demonstrated in Part I, it should be 
possible to construct a temperature probe which 
behaves essentially as an adiabatic cylinder (see Fig. 

9 

B 

9 
R 

9 
D 

FIG. 10. Effect of power law index on local wall temperature 
of the cylinder (Nn = 0, Wb = lo’, x*/R* = 0.11). 
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FIG. Il. Effect of Weisenberg number on local wall tem- 
perature of the cylinder (Nu = 0, rn = 0.5). 

From Fig. 13 it is evident that the correlation is most 
inaccurate for m = 0.8 at low Weisenberg numbers 
and for m = 0.2 at higher Wb. The similarity of the 
slope dependence on the power law index, m, in the 
case of nondimensional viscosity q (equation (1.5) and 
Fig. 2) and the nondimensional adiabatic tip tem- 
perature, 0, (equation (18) and Fig. 13) is readily 
apparent. 

To study the temperature dependence of viscosity 

FIG. 12. Effect of Carreau model parameters on non- 
dimensional tip temperature (Na = 0). 

FIG. 13. Power law correlation for nondimensional tip 
temperature (Nrr = 0). 

the Nahme number, Nu, was varied from 0 to 104 for 
fixed values of Wh and m. This range is shown to be 
representative of the order of magnitude of the Nahme 
number variation by the following estimate suggested 
by Winter (personal communication, 1990). 

Since 

(19) 

using representative quantities : 

Pr = IO”, c,*=2x103Jkg-‘K-l, 

E*o15kcalkmol-‘, R”x2kcalkmot’K ’ 

and assuming 

U$=O.lms-‘, T$=400K, 

this implies 

NU x 3.75 x IO3 

This establishes a reasonable range of values to study 
the Nahme number variation in typical polymer pro- 
cessing applications. 

In this Nahme number range the effect of increasing 
temperature dependence of viscosity on the defor- 
mation rate profiles on the cylinder surface is pre- 
sented in Fig. 14. These profiles are computed for 
x*/R* = 0.11, which is immediately downstream of 
the cylinder tip. It is evident that an increase in Nahme 
number, Na, tends to increase the wall deformation 
rate y*. This is similar to the shear thinning effect (Fig. 
8) demonstrated above, with the decrease in the local 
viscosity at the wall causing a corresponding increase 
in the velocity gradient normal to the cylinder surface. 
However, in this case the effect of the decrease in the 
local viscosity and the increase in defo~ation rate 
produce an increase in the local viscous dissipation 
rate. This is the opposite of the shear thinning effect 
which was discussed above. This increase in dis- 
sipation rate results in a higher local surface tem- 
perature as the Nahme number increases (Fig. 15). 
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FIG. 14. Nahme number effect on deformation rate profiles 
in the hydrodynamic boundary layer (VI = 0.4, Wb = 104, 

x*/R* = 0.11). 

Apparently, the net effect of the decrease in r~ and 
the increase in y (or 0) tend to increase the viscous 

dissipation generation term in equation (5). The mag- 
nitude of this increase as a function of distance along 
the cylinder surface is shown in Fig. 16 for various 
values of Nu. Clearly, the net effect of the temperature 
dependence of r~ is to increase the viscous heating 
of the cylinder surface. In contrast the temperature- 
dependent viscosity has very little effect on the non- 

dimensional tip temperature for Nu < 10“ as pre- 
sented in Table 1. From Table 1 it is apparent that 
for Nu 6 lo4 there is less than a 1% change in the 
nondimensional tip temperature. Evidently, the 
limited upstream elliptic influence of temperature has 
little effect on the temperature dependence of viscosity 
and hence the deformation rates local to the cylinder 
tip. 

FIG. 15. Nahme number effect on temperature profiles in 
the hydrodynamic boundary layer (m = 0.4, Wb = 104, 

x*/R* = 13.8). 

FIG. 16. Nahme number effect on the local wall temperature 
of the cylinder (m = 0.5, Wb = 103). 

CONCLUDING REMARKS 

In this study a numerical analysis has been pre- 

sented for the steady, low Reynolds number flow of 
a high Prandtl number non-Newtonian fluid past a 
cylinder of finite length with its axis parallel to the 

main flow direction. It is thought that the cylinder 

approximates the shape of a temperature probe 
inserted into the fluid. The fluid is postulated to be a 
Carreau model fluid with a temperature-dependent 
viscosity. Part I of this study considered the limiting 
case of a Newtonian fluid with physical properties 

which are independent of temperature. In Part I the 
effects of Reynolds number, Prandtl number, cylinder 
radius to length ratio and cylinder conductivity to 
fluid thermal conductivity were studied. In general the 

results of that analysis indicated a viscosity dominated 
flow field with hydrodynamic boundary layers extend- 
ing hundreds of cylinder radii in all directions, as 
well as very thin thermal boundary layers confined to 
narrow regions of high deformation rates near the 
cylinder surface. The calculations presented verified 

that viscous heating effects are important in such fluid 
flows when a temperature probe is used to measure 

Table 1. Dependence of the 
temperature parameter OS 
on the Nahme numbed 
(R/L = 0.025, Re = 1O-3 

and Pr = 108, m = 0.5, 
Wb = 101) 

Na 

0.0 1.128 
IO2 1.128 
lo3 1.129 

5 x 103 1.132 
104 1.137 
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the temperature in a flowing polymer. Part II extends 
thcsc results by considering the effect of a shear 
thinning, temperature-dependent non-Newtonian vis- 

cosity modeled by a temperature shifted Carreau fluid. 
This analysis presented a parametric study of the effect 
of shear thinning behavior, described by the power 

law index 111 and the Weisenberg number W/I, and the 

temperature dependence of viscosity described by the 
Nahme number Nu. The results for a tcmperature- 

independent viscosity indicate that the magnitude of 
the viscous heating effect decreases substantially with 
increasing non-Newtonian behavior (decreasing m 

and/or increasing Wb). These results verified that the 
limiting Newtonian case studied in Part I provides 
an upper bound for the magnitude of the viscous 

dissipation heating encountered in such flows. In 
addition. these results revealed the existence of a 
power law type relationship between the non- 
dimensional tip temperature and the Wcisenberg 
number and power law index. For this region a power 
law correlation was presented which successfully 
described the trend of the numerical data. The study 
of temperature-dependent viscosity effects indicated 
that in general the magnitude of the viscous dis- 
sipation heating of the cylinder surface increased with 
increasing Nu. In addition, the results indicated a 
relatively small effect on the nondimensional tip tem- 
perature for the case of an adiabatic probe. Since a 
properly designed temperature probe should be able 
to approach the response of the adiabatic limit (Part 
I) it is concluded that the temperature dependence 
effect on the tip temperature is small for reasonable 
values of Nu. 
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ECHAUFFEMENT VISQUEUX D’UN CYLINDRE DE LONGUEUR FINIE PAR UN 
LIQUIDE FORTEMENT VISQUEUX EN ECOULEMENT LONGITUDINAL 

PERMANENT-II. FLUIDES NON NEWTONIENS DE CARREAU 

R&sumC-On etudie numeriquement le chauffage par dissipation visqueuse d‘un cylindre de longueur linie 
expose a l’ecoulement permanent d’un fluide non newtonien. La solution conccrne les champs de vitesse 
et de temperature elliptiques d’un 1Iuide non newtonien de Carreau fortement visqueux autour d’un cylindre 
axisymetrique. Ayant en consideration le traitement de polymbre, la partie 1 de cette etude [E. R. G. Eckert 
et J. N. Shadid, Int. J. Heut Mass Trunsfer 32, 321-334 (198911 considerait l’effet des nombres de Reynolds 
et de Prandtl, le rapport du rayon a la longueur, et le rapport dcs conductivids thermiques du cylindre et 
du tluide. On etend ici les rtsultats en considerant I’effet d’une viscosite non newtonicnne dependant dc la 
temperature selon le modele de Carreau. Des calculs sont conduits pour differentes valeurs de l’exposant 
dans la loi puissance, des nombres de Weisenberg et de Nahme. Ces calculs sont presentes pour unc 
cprouvette adiabatique ayant un rapport rayon sur longueur de 2,5 x IO 2 et pour dcs nombres de Reynolds 
et de Prandtl respectivement fixes i IO-? et IO’. L’exposant varie entre I,0 (newtonien) et 0,2. le nombrc 
de Weisenberg cntre 0 (newtonien) et IO’, et le nombre de Nahme entrc 0 et 104. Lcs resultats concernent 
I‘accroissement des temperatures de la paroi et de I’extremite dfi a l’echauffement visqueux. Des effets sont 
sensibles pour la vitesse jusqu’a plus de 100 rayons en amont du cylindre. L’effet de la dependance de la 
viscosite vis-a-vis de la temperature decrite par le nombre de Nahme a une faiblc influence sur la temperature 

dc l’extremite du cylindre. 
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BEHEIZUNG EINES ZYLINDERS ENDLICHER LANGE DURCH VISKOSE DISSIPATION 
BE1 DER STATIONAREN LANGSANSTRQMUNG DURCH EIN FLUID GROSSER 

ZAHIGKEIT-II. NICHT-NEWTON’SCHE MODELLFLUIDE NACH CARREAU 

Zusammenfasswng-Die Beheizung eines Zylinders endlicher Lange durch viskose Dissipation bei der 
gleichm~~igen station&en Anstr~mung durch ein Nicht-Newton’~hes Fluid wird nurnerisch untersucht. 
Als L&sung ergeben sich die elliptischen Geschwindi~eits- und Tem~rat~elder in einem Nicht-New- 
ton’schen Modellfluid hoher Viskositiit nach Carreau in der Umgebung eines achsensymetrischen Zylinders. 
Vor dem Hintergrund der Polymerverarbeitung befagte sich Teil I dieser Untersuchung mit dem Einflug 
der Reynolds-Zahl, der Prandtl-Zahl, des Verhaltnisses von Radius zu Lange sowie des Verhlltnisses der 
Warmeleitfihigkeiten von Zylinder und Fluid. In der vorliegenden Arbeit erfolgt eine Erweiterung zur 
Beriicksichtigung des Einflusses einer temperaturabhingigen Nicht-Newton’schen Viskositlt, die unter 
Schubspannung abnimmt und durch ein temperaturversetztes Fluid nach Carreau dargestellt wird. Die 
Berechnungen wurden fur unterschiedliche Werte des Exponenten im Potenzansatz, der Weisenberg- 
Zahl und der Nahme-Zahl durchgefiihrt. Die Berechnungen erfolgten fur eine adiabate Probe mit einem 
RadiusiL~ngen-Verh~ltnis von 2,s x lo-“, einer Reynolds-Zahl von 10e3 und einer ~andtl-Zahl von IO*. 
Der Exponent wird zwischen 1,O (Newton’sches Fluid) und 0,2 variiert, die Weisenberg-Zahi zwischen 0 
(Newton’sches Fluid) und lo4 und die Nahme-Zahf zwischen 0 and 10“. Die Ergebnisse zeigen den Anstieg 
der Temperaturen an Zylinderwand und -stirnseite aufgrund der Reibungsheizung. Es ergeben sich stark 
elliotische Einfliisse auf die Geschwindiekeit. die sich iiber eine Lange von tiber 100 Radien stromaufwirts 
des’zylinders erstrecken. Wie erwartet mmmt aufgrund der scherungsbedingt verringerten Viskositat die 
Starke der Beheizung der Probenoberflache aufgrund der viskosen Dissipation ab. Im Gegensatz dazu hat 
die Temperaturabhlngigkeit der Viskositiit (wie sie die Nahme-Zahl beschreibt) einen VerhCltnismaBig 

geringen Einflug auf die Temperatur der ZylinderstirnflBche. 

BII3KOCTHbIm HAI-PEB I&UIkfH~PA KOHEsHOR &RkiHbi I-IPR CTAIJHOHAPHOM 
IIPOfiOJIbHOM OETEKAHHH BbICOKOBR3KOfi XH~KOCTbIO--II. 

HEHLIOTOHOBCKHE XMAKOCTM, OI-IkiCbIBAEMbIE MOAEJIbKl KAPPO 

Amom~Yacne~~o ammi3~pyercr Harper4 38 cveT sa3~ocmofi miccanaum ummmpa KoHewoii 
mlilfbI, 06TeKEMOrO CTaIViOHaPHbIM IIOTOKOM HeHbHlTOHOBCKOk XWlKOCTH C lloCTORHHOti CKOpOCTbKk 
@Ipef&enSiIOTCx ~JUIH~ITNS~CKO~ none, a Tame nona CXopocTefi a TeMnepaTyp B Monena Kappo AJIX 
BEdCOKOBR3KOf HeHbKlTOHOBCKOii X@fJlKOCTW, o6Terwou$eii CEtXXiMM~~H~Hbiii E@iJBfH@‘h B %iCTB I BaC- 

ToKmero ~~~e~oBaH~~ ~~MaTp~~n~b mmme sicen Peikonbwa w lIpasfiTm,a Tame oTHome- 
HE& PiijISiyCa 3OIiJGl K Cl-0 JlJBiHe Si Te~OnpOBOAH~Te~ UHJlHkUI~ii B ttcHiVWCTei% B lIpHJIO~eHHE K 

o6patioTKe SlOJIiiMepOB. B @HHOil 4aCTH nOJ‘~eHHble ~3jVibTZlTbl 0606l3&SOTCX Ha CJIySaii YWTa 

BJIHKHUR 3aBHCSilWii OT TeMIIepaTy&W aHOMaJIbHOii CnBLWOBOfi BX3KOCTB, MOJWIHpyeMOii XBLIKOCTbIO 

Kappo c a3rdeam~eiicn TeMnepaTypoiLPacseTbl npoeominecb Qnn pa3nEWbIX 3Haremil norca3aTem 
crenewforo 3axoHa,a Tamce wcen BaiiseH6epra H HaMe. ripemraeneara pac%Tbr .&II% amfa6aTsrec- 
KOrO 3OIina C OTHOIIWiBeM paLUS)‘CZi K LIJDiIiC, PaBHbIM 2,5 X lo-‘, B YBCJIaMEi P’ZiiHOJIbJlCa H r]IpaHATjPI, 

COCTaBJWItoU,HMB COOTB‘ZTCT8eHHO lo- 3 IS 10-8. noKa3aTenb CTeneHHoro 3aKoHa BapnHpyeTcn OT 0,l 
(HbIOTOHOBCKOTO) A0 42; 9WCJIO Baii3eH6epra-oT 0 (HbtOTOHOBCKOE’O) A0 lo4 H YBCJIO Ham-B HHTep- 

B&E‘? o-l@. Pe3ynbTaTla yKa3MBWT Ha POCT TeMS-IepaTj’pht C’RHKE W BePIUHHM I@S,IEHlJ~ 38 CWT BSI3- 

KOCTHOrO EiW~Baa. &iJtbHOe 3~~~T~qeC~~ BJHiIiHHe Ha CTeKy ~~~H~a PaC~~paH~~C~ Ha ashy 

CTa PaAHyCOB BBepX II0 TeWHMo OT WDEiHpa. KaK B OXU%&@.ROCb, 4TO ~eHb~eH~e CfiBHrOBOk BHOMa- 

JIbHOii BK3KOCTN ll&WBOLWT K CHHXWHHK) BWWIHHbI HaI’pBa IIOBepXHOCTE! 3OHE(a 38 C’ieT BII3KOCTHOii 

L&fCCiiiIaIGiH. HaIIpoTHB, T‘2MnepaTypHaS 3aB%iCSiMOCTb BX3KOCTII, OIlHCbIBaeMOti ‘IUCJIOM HaMe, OICa3bI- 
BaeT CpaBHHTeJTbHO ne6onbmoe BJUiKHHe Ha TeMnepaTyPy BepIUHHbJ WiJl~HApa. 


